

August 2015

NASA/TM-2015-218789

Achieving Agreement In Three Rounds With
Bounded-Byzantine Faults

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

August 2015

NASA/TM-2015-218789

Achieving Agreement In Three Rounds With
Bounded-Byzantine Faults

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and
Space Administration.

i

Abstract

A three-round algorithm is presented that guarantees agreement in a system of K ≥ 3F+1
nodes provided each faulty node induces no more than F faults and each good node experiences
no more than F faults, where, F is the maximum number of simultaneous faults in the network.
The algorithm is based on the Oral Message algorithm of Lamport et al. and is scalable with
respect to the number of nodes in the system and applies equally to the traditional node-fault
model as well as the link-fault model. We also present a mechanical verification of the
algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as
confirming claims of determinism.

Keywords: Oral Message, Agreement, Byzantine, fault tolerant, synchronization, distributed,
model checking

ii

Table of Contents

ABSTRACT .. ERROR! BOOKMARK NOT DEFINED.

TABLE OF CONTENTS ...II

1. INTRODUCTION .. 1

2. FAULT MODELS .. 3

3. SYSTEM OVERVIEW .. 3
3.1. COMMUNICATION DELAY .. 4
3.2. THE SYNC MESSAGE AND ITS VALIDITY .. 4

4. 3ROM .. 5
4.1. PROOF OF THE 3ROM ALGORITHM FOR LINK-FAULT MODEL .. 6
4.2. PROOF OF THE 3ROM ALGORITHM FOR NODE-FAULT MODEL ... 7
4.3. MESSAGE OBSERVATION WINDOW, AGREEMENT WITHIN A TIME BOUND ... 10
4.4. COMPLEXITY OF THE 3ROM ALGORITHM ... 11

5. MODEL CHECKING .. 11
5.1. MODEL CHECKED PROPOSITIONS ... 12

6. CONCLUSIONS ... 13

REFERENCES .. 13

1

1. Introduction

Distributed systems have become an integral part of safety-critical computing applications,
necessitating system designs that incorporate complex fault-tolerant resource management
functions to provide globally coordinated operations with ultra-reliability. As a result, robust
clock synchronization has become a required fundamental component of fault-tolerant safety-
critical distributed systems. Synchronization has practical significance as a fundamental service
for higher-level algorithms that solve other problems. For example, in safety-critical TDMA
(Time Division Multiple Access) architectures [1, 2, 3], synchronization is the most crucial
element of these systems. Typically, the assumed topology is a regular graph such as a fully
connected graph or a ring since they provide a base case to solve the distributed synchronization
problem.

A fundamental property of a robust distributed system is the capability of tolerating and
potentially recovering from failures (loss of service due to a fault) that are not predictable in
advance. A fault is a defect or flaw in a system component resulting in an incorrect state [2, 4].
In the context of fault-tolerant distributed systems, a fault presenting different symptoms to
different observers is known as a Byzantine (arbitrary) fault. We assume that there are a
maximum of F simultaneous faults in the network. The requirement to handle faults adds a new
dimension to the complexity of the synchronizing distributed systems.

We call an approach to solving the clock synchronization problem direct if it relies solely on
local (node level) detection and filtering of faults. This approach is primarily limited to detecting
timing and/or value faults of a node’s incoming messages. In contrast, we call an approach
indirect if it relies on the network level detection and filtering of faults independent of, and in
addition to, the local detection and filtering of the faults. This approach however requires
coordination at the network level.

Thus far, there is no verifiable solution for the general case of the clock synchronization
problem, where the topology is arbitrary and any number of various types of faults are tolerated.
Furthermore, most attempts have been in trying to solve this problem directly, although there are
some approaches to solve this problem indirectly using authenticated (signed) messages [5].
Driscoll et al. in [6] however argues that “while the arguments of unforgeable signed messages
make sense in the context of communicating generals, the validity of necessary assumptions in a
digital processing environment is not supportable. In fact, the philosophical approach of
utilizing cryptography to address the problem within the real world of digital electronics makes
little sense. The assumptions required to support the validity of unbreakable signatures are
equally applicable to simpler approaches (such as appending a simple source ID or a CRC to the
end of a message). It is not possible to prove such assumptions analytically for systems with
failure probability requirements near 10-9/hr.” Furthermore, addressing network element
imperfections, such as oscillator drift with respect to real time and differences in the lengths of
the physical communication media, is necessary to make a solution applicable to realizable
systems.

The main issue in solving the clock synchronization problem is a lack of symmetric view
(agreement) in the system at the participating good nodes in the sense that two good nodes may

2

disagree on the message sent. However, there are a number of ways of achieving message
symmetry across the system. In [5, 7] various ideas for overcoming failures in a robust
distributed system are addressed that include tolerating Byzantine faults. In solving the
consensus problem, which is the ability of a set of nodes to agree on a single value despite
failures, Schmid et al. argue in [8] that: “A fully-fledged n-process consensus algorithm is
obtained by using a separate instance of a Byzantine agreement algorithm (with n-1 receivers)
for disseminating any process’s local value, and using a suitable choice function (majority) for
the consensus result*.” The consensus problem, and hence, the proposed idea by Schmid, is
based on inherent assumption of synchrony among the good nodes, and so is not applicable to
solving the clock synchronization problem.

Other methods include using variety of engineering practices, e.g., using a self-checking pair at
the node level [9, 10] or central guardians at the system level [11, 12]. However, as Driscoll et

al. reported in [6], correctness of claims of these approaches may not be verifiable. Furthermore,
we believe that to be generally useful, algorithms that guarantee agreement must be able to
handle non-authenticated messages. Thus, the crux of our idea, as proposed in [13], is to solve
this problem indirectly by first converting any message to a symmetric message, and then use a
verified protocol based on the symmetry assumption to solve the synchronization problem.

The Oral Message (OM) algorithm of Lamport et al. [5] that solves the Byzantine Agreement
(BA) problem [14] is also an indirect approach, and is meant to reliably transform a message
from a single source to a symmetric message (an agreement). The OM algorithm has been
proven to reach agreement at the network level for a given source [5, 14, 15] and does not
require initial synchrony among the good nodes. The OM requires F+1 rounds of exchanges
and, with a message complexity of O(KF), the number of exchanged messages grows
exponentially as F grows linearly. Therefore, the use of the OM algorithm for F > 2 is very
costly and impractical.

In this paper, we present an alternative for achieving agreement, hereafter referred to as 3ROM
(3 Rounds using OM) algorithm that is based on the OM algorithm. The 3ROM assumes each
node Ni, i = 1..K, either induces up to F faults if it is a faulty node, or experiences no more than F
faults if it is a good node. It further assumes that the maximum number of simultaneous faults in
the network is limited to F. We indicate the number of faults associated with Ni by fi, thus,
F = ∑ fi, and fi ≤ F. The 3ROM algorithm is independent of the fault model (node-fault or link-
fault model), and as the name implies, achieves agreement in three rounds. Thus, it is
independent of the number of faults (in terms of number of required rounds, not the amount of
messages). The algorithm has a message complexity of O(K3), and is also scalable with respect
to K. We also present the model checking results of a bounded model of the algorithm to verify
its correctness.

This paper is organized as follows. We describe the fault models in Section 2. In Section 3 we
provide a system overview. We present the 3ROM algorithm and its formal proof in Section 4.
In Section 5, we present the model checking efforts toward verification of correctness of a
bounded model of the algorithm and the results of that effort. Finally, we present concluding
remarks in Section 6.

* Since we use Ni to address a node, we use K here instead of n as is traditionally used in the literature.

3

2. Fault Models

In synchronous message-based distributed systems, a fault is typically defined as a message that
was not transmitted when it was expected or a message that was transmitted but not received or
received but not accepted, i.e., deemed invalid by a receiver. Thus, the fault is either associated
with the source node of the message, the corresponding link between the source node and the
destination node, or the destination node. Consequently, there are two viewpoints, node-centric
and link-centric, and thus, there are two ways of modeling faults. In the node-centric model,
which we refer to as the node-fault model, the faults are associated with the source node of the
message and all fault manifestations between the source and the destination nodes for the
messages from that source count as a single fault, which is specially the case when the faults are
associated with a Byzantine faulty node [5, 6, 16, 17]. In this model all links are assumed to be
good. Miner et al. [16] for instance, model the absence of a link as a link fault and even though
both nodes and links failures are considered, they abstractly model link failures as failures of the
source node.

In the link-centric model, which we refer to as the link-fault model, a fault is associated with the
communication means connecting the source node to the destination node. In this model, all
nodes are assumed to be good and an invalid message at the receiving node is counted as a single
fault for the corresponding input link. Thus, from the global perspective, a Byzantine faulty
node manifests as one or more link failures.

A link-fault model introduced by Schmid et al. [18] is called perception-based hybrid fault

model, where faults are viewed from the perspective of the receiving nodes. Faults are
associated with their input links, and all nodes are assumed to be good. They argued that since F
faulty nodes can produce at most F faulty perceptions in any node, the link-fault model is
compatible with the traditional node-fault model and so, all existing lower bound and
impossibility results remain valid.

“In the perception-based model, the system-wide number of faults is replaced by the number of
faults that are observable in the nodes’ local ‘perceptions’ of the system. Formally, node r’s
perception vector Vr = (Vr

1, Vr
2,…, Vr

K,) is considered, where every perception Vr
s ϵ Vr represents

the message node r received from node s in some specific round; type and value(s) depend upon
the particular algorithm considered” [18]. In that paper, Schmid et al. present a solution for
synchronous deterministic consensus problem, where all nodes are expected to achieve
agreement on a single value, in synchronous distributed systems with link faults.

3. System Overview

We considered “synchronous” message-passing distributed systems and modeled the system as a
graph with a set of nodes (vertices) that communicate with each other by sending messages via a
set of communication links (edges) that represent the nodes’ interconnectivity. The underlying
topology considered is a fully connected network of K nodes that exchange messages through a

4

set of communication links. We leave the generalization to other topologies to future works.
The system consists of a set of good nodes and a set of faulty nodes. A good node is assumed to
be an active participant and correctly execute the algorithms. A faulty node is either benign
(detectably bad), symmetrically faulty, or arbitrarily (Byzantine) faulty. However, in this paper
our primary focus is Byzantine faults.

The communication links are point-to-point and unidirectional, each connecting a source to a
destination node. Thus, the fully connected graph consists of K(K-1) unidirectional links. A
good link is assumed to correctly deliver a message from its source node to its destination node
within a bounded communication delay time. A faulty link does not deliver the message,
delivers a corrupted message, or delivers a message outside the expected communication delay
time.

The nodes communicate with each other by exchanging broadcast messages. Broadcast of a
message by a node is realized by transmitting the message, at the same time, to all nodes that are
directly connected to it. The communication network does not guarantee any relative order of
arrival of a broadcast message at the receiving nodes, that is, a consistent delivery order of a set
of messages does not necessarily reflect the temporal or causal order of the message
transmissions [1]. A maximum of F faults are assumed to be present in the system, where F ≥ 0.
We assume K ≥ 3F+1 and define the minimum number of good nodes in the system, G, by
G = K-F nodes. The minimum number of nodes needed to maintain synchrony is well
established to be 3F+1 [6, 14, 19].

3.1. Communication Delay

The communication delay between directly connected (adjacent) nodes is expressed in terms of
the minimum event-response delay, D, and network imprecision, d. These parameter are
measured at the network level. A message broadcast by a node at real time t is expected to arrive
at its directly connected adjacent nodes, be processed, and subsequent messages to be generated
by those nodes within the time interval [t+D, t+D+d]. Communication between independently-
clocked nodes is inherently imprecise. The network imprecision, d, is the maximum time
difference among all receivers of a message from a transmitting node with respect to real time.
The imprecision is due to many factors including, but not limited to, the drift of the oscillators
with respect to real time, jitter, discretization error, temperature effects and differences in the
lengths of the physical communication media. These parameters are assumed to be bounded, D
> 0, d ≥ 0, and both have units of real-time clock ticks and their values known in the network.
The communication delay, denoted , is expressed in terms of D and d, is defined as  = D+d,
and has units of real-time clock ticks. In other words, we assume synchronous communication
and bound the communication delay between any two directly connected adjacent nodes by
[D, ]. However, for simplicity of notation, in the remainder of this paper we assume that the
messages arrive logically at the same time at the destination nodes.

3.2. The Sync Message And Its Validity

In order to achieve and maintain desired synchrony, the nodes communicate by exchanging Sync
messages, where synchrony is defined as a measure of the relative imprecision of the good

5

nodes. A Sync message from a given source is valid if it arrives at or after one D of an
immediately preceding Sync message from that source, that is, the message validity in the value
domain, i.e., valid Sync messages are rate-constrained. Assuming physical-layer error detection
is dealt with separately, the reception of a Sync message is indicative of its validity in the value
and time domains.

4. 3ROM

In a synchronous distributed system, the Oral Message algorithm of Lamport et al. [5] solves the
Byzantine Agreement (BA) problem [14] by reliably transforming a message, in the presence of
faults, to a symmetric message at the network level, whereby the good nodes reach an agreement
and collectively either accept or reject the message. The OM algorithm is recursive and every
iteration of the execution of the algorithm constitutes a step (round) of exchange of messages by
the nodes. An instance of the OM algorithm starts with the source node broadcasting a message,
the first round, followed by other nodes (except the source of the message) recursively
rebroadcasting (relaying) the messages they receive to others in subsequent rounds. For a fully
connected graph of K nodes, the OM algorithm requires F+1 communication rounds. At the end
of the F+1 rounds, the nodes vote and reach agreement.

In this section we present a three-round algorithm, similar to the OM algorithm, that achieves
agreement among the good nodes, independent of F, provided that K ≥ 3F+1 nodes, where
K is the number of nodes, F = ∑ fi, for i = 1..K, where fi is the number of faults associated with
Ni. For the node-fault model, the faulty nodes act arbitrary provided their behavior is bounded
by the assumption, i.e., at any round a faulty node broadcasts a valid message to at least K-F
other nodes. Similarly, for the link-fault model, at any round no more than F link faults are
perceived at a receiving good node. We will also show that this three-round algorithm applies
equally to the node-fault and link-fault models. To simplify presentation of this algorithm, we
assume broadcast messages arrive logically at the same time at their destination good nodes. We
later remove this simplifying assumption and show that agreement is reached at the good nodes
within a time bound. We use two types of messages: Sync and Relay, and extend the message
validity argument of Section 3.2 to both messages.

The 3ROM Algorithm

The algorithm depends on two positive parameters α and β, which are used in determining the
final acceptance or rejection of a Sync message from a source node. Hence, the algorithm
described is actually 3ROM(α, β). The algorithm consists of three rounds and a vote.

Round 1 – The source node broadcasts a Sync message to all other nodes, effectively saying
“I’m here.” A node does not physically send a message to itself even though it uses its
own message. The nodes that receive the message record that the message was received.

Round 2 – All good nodes that received a Sync message in Round 1 broadcast a Relay
message to all other nodes, essentially saying “I’ve got a message.” The good nodes that
do not receive the Sync message do nothing. Note that since the source node uses own
message, if it is a good node, it too participates in this round.

6

Round 3 – All good nodes that received at least α messages (Sync or Relay) in Round 2
broadcast a vector of K messages containing what they have received from all other
nodes in Rounds 1 and 2; effectively saying “This is what I’ve received from others.”
Note that, if the algorithm assumptions hold, all good nodes participate in this round.

Vote – At the end of Round 3, each node locally constructs a KxK network-level matrix M of
received messages, where entries M(i, j) = {s, r, 0}, i, j = 1..K, where ‘s’ indicates having
received a Sync message, ‘r’ indicates having received a Relay message and ‘0’ for not
receiving any messages, i.e., a fault. A column cj of the matrix M corresponds to the
messages perceived as transmitted by Nj and a row ri of the matrix M corresponds to the
messages received by Ni. Let, for i, j = 1..K, Xi = 1 if ∑cj > α and Xi = 0, otherwise,
where ∑cj is the sum of the non-zero entries in column cj, i.e., treating ‘s’ and ‘r’ entries
equally. Finally, the node votes “accept” if ∑Xi > β, i.e., the node accepts the message
from the source node if more than β columns of M have more than α non-zero entries
each.

4.1. Proof Of The 3ROM Algorithm For Link-Fault Model

The proof of correctness of the OM algorithm, and consequently, the proof of correctness of the
3ROM algorithm, is centered on the following two properties.
AP (Agreement Property): If receiver nodes p and q are nonfaulty, then they agree on the

value ascribed to the transmitter.
VP (Validity Property): If the transmitter is nonfaulty, then every nonfaulty receiver

computes the correct value.

In addition to the network-level matrix M that each node constructs at the end of Round 3, the
proofs to follow rely on another related matrix Mglobal that can be constructed at the end of Round

2. Following Round 2, each node has a vector of received messages that describes the messages
it received from each node. The Mglobal, with entries related to the matrix M, i.e., Mglobal(i, j) =
{s, r, 0}, reflects a global view of the network at the end of Round 2. While it is inaccessible to
any nodes, it is related to the matrices M built by each node.

Theorem 1. For a fully connected graph with K > 3F nodes and the link-fault model, i.e., fi ≤ F,

3ROM(K/3, 2K/3) guarantees agreement at the good nodes.

Proof. The source node is a good node (all nodes are good in the link-fault model).
Round 1 – NS, the source node, broadcasts a Sync message and it is received correctly (valid) by

at least K-F nodes. Let H be this set of nodes.
Round 2 – Each node in H broadcasts a Relay message to all other nodes and at least K-F other

nodes will receive the Relay message correctly. Hence, for each node in H, its
corresponding column in Mglobal has at least K-F non-zero entries, i.e., ‘s’ and ‘r’.

Round 3 – Since at the end of Round 2, all good nodes receive messages from the nodes in H, at
least K-2F = F+1 messages, all good nodes participate in this round. Each good node
broadcasts its vector of received messages to all other nodes and at least K-F nodes will
receive it correctly. At the end of this round, a node constructs its matrix M, which is
similar to, but likely different from, Mglobal. Since the rows of M are the messages in
Round 3, at most F rows can be different from Mglobal. Thus, the sum of non-zero entries

7

in any column in of M differs from the sum of the same column in Mglobal by at most F
entries. Therefore, the columns in M corresponding to nodes in H have at least K-F-F
non-zero entries. Since K > 3F, (equivalently, K/3 > F), there are at least K-F > 2K/3
columns in M (the nodes in H), with at least K-2F > K/3 non-zero entries. Thus, each
node votes “accept” for 3ROM(K/3, 2K/3). □

Table 1 is an example of the network-level matrix at the end of Round 3 for F = 2 and K = 7.
The grayed cells along the diagonal in this matrix are the messages a node sends to itself, thus,
cannot be faulty. An “s r” entry indicates that a Sync message was received in Round 2 and was
replaced by a Relay message from the same node in Round 3.

Table 1. An example of matrix of received messages at the end of Round 3.

Ni 1 2 3 4 5 6 7

1 s r 0 0 r r 0 0

2 s r r 0 0 r 0 0

3 s r r r 0 0 0 0

4 s r 0 r r 0 0 0

5 s r r r r 0 0

6 0 r r r r r 0 0

7 0 r r r r 0 0

Xi 1 1 1 1 1 0 0

Table 2 shows the matrices at N1 and N2, as examples, at the end of Round 3. The grayed rows
indicate the effects of link faults at the two nodes in Round 3.

Table 2. An example of matrix of received messages at N1 and N2 at the end of Round 3.

N1 1 2 3 4 5 6 7

1 s r 0 0 r r 0 0

2 s r r 0 0 r 0 0

3 s r r r 0 0 0 0

4 s r 0 r r 0 0 0

5 s r r r r 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

Xi 1 1 1 1 1 0 0 V=1

N2 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 s r r 0 0 r 0 0

3 s r r r 0 0 0 0

4 s r 0 r r 0 0 0

5 s r r r r 0 0

6 0 r r r r r 0 0

7 0 0 0 0 0 0 0

Xi 1 1 1 1 1 0 0 V=1

4.2. Proof Of The 3ROM Algorithm For Node-Fault Model

In the classic node-fault model, a node’s message may be perceived as faulty by many other
nodes. However, we assume there are up to F simultaneous Byzantine faulty nodes present in
the network and they behave arbitrarily but are limited to inducing no more than F faults at
each round, i.e., fi ≤ F.

8

Theorem 2. For a fully connected graph with K ≥ 3F+1 nodes and the node-fault model, i.e.,

fi ≤ F, 3ROM(K/3, 2K/3) guarantees agreement at the good nodes.

Proof. Note that a bounded-Byzantine faulty node can be modeled by a link-fault model, where
the faulty links are exactly those where the received messages are invalid. Thus, whether the
source node is good or Byzantine faulty, since the maximum number of bounded-Byzantine
faulty nodes, F, is less than a third of K and since the link-fault model allows each node up to F
faults per round, the proof of Theorem 1 applies in this case. □

Table 3. An example of matrix of received messages at the good nodes Ni, i = 1..5, at the end of
Round 3. N6 and N7 are the Byzantine faulty nodes and N6 is the source node.

Ni 1 2 3 4 5 6 7

1 r r r 0 0 s r 0

2 r r r 0 0 s r r

3 r r r 0 0 s r

4 r r r 0 0 0 r 0

5 r r r 0 0 0 r

6 - - - - - s r r

7 - - - - - s r r

Xi 1 1 1 0 0 1 1 V = 1

Table 3 is an example of the matrix after Round 3 at Ni. We would like to point out that, unlike
the Table 2 for the link-fault model, this matrix is the same at all good nodes except for the rows
and columns corresponding to the faulty nodes; c6, c7, and r6, r7, respectively. A ‘-’ entry in the
matrix means don’t care.

Theorem 3 (Agreement). For any F and K, for a fully connected graph with K ≥ 3F+1 nodes

and fi ≤ F, the 3ROM algorithm satisfies AP at the good nodes.

Proof. It follows from Theorems 1 and 2 that, if the assumptions are met, the 3ROM algorithm
always guarantees agreement at the good nodes. □

Theorem 4 (Validity). For any F and K, for a fully connected graph with K ≥ 3F+1 nodes and fi
≤ F, the 3ROM algorithm satisfies AP and VP.
Proof. It follows from Theorems 1 and 2 that, if the assumptions are met, the 3ROM algorithm
satisfies the agreement and validity properties at the good nodes. □

Corollary 5. The number of rounds required by 3ROM algorithm is independent of F.

Proof. It follows from Theorem 3 that the 3ROM algorithm always guarantees agreement at the
good nodes in three rounds and regardless of a particular value of F. □

Theorem 6. For a fully connected graph with K ≥ 3F+1 nodes and fi ≤ F, the node-fault model

subsumes the link-fault model.

Proof. Given the assumptions that fi ≤ F, i.e., a node either is faulty and induces up to F faults
per round or it is good and experiences no more than F faults per round. Given the link-fault
model, the 3ROM algorithm converts any message from a node Ni to a symmetric message in
three rounds. With the link-fault model, the nodes are considered to be good even though the

9

faults are manifested on their links. Thus, given up to F faults per node (i.e., the maximum
number of outgoing faulty links per node), a maximum of KF faults per round are tolerated.
With the node-fault model, a maximum of F faulty nodes are assumed to be present with up to F
faults per outgoing links of a faulty node, thus, a total of F2 faults per round are tolerated. Since
for F > 0, F2 < KF, the node-fault model subsumes the link-fault model. □

Thus far, we assumed that the Byzantine faulty nodes behave arbitrarily but are limited to
inducing no more than F faults at any round. We now weaken the assumption of fi ≤ F so that a
faulty node behaves fully arbitrary in Round 2 and/or Round 3. The 3ROM algorithm still
achieves agreement, but, the voting criteria needs to be adjusted to accommodate this weakened
assumption, i.e., 3ROM(K/3, K/3+1). One manifestation of a faulty behavior is for the node to
not broadcast anything during Round 2 and/or Round 3. Note that when a node fails crash-silent,
fi = K and it can readily be detected from the network-level matrix at the end of Round 3 since its
corresponding column will have at least K-F zeroes. This diagnosis information can potentially
be used at the network level. We now show that the 3ROM algorithm still achieves agreement
when the source is a Byzantine faulty node.

Theorem 7. For a fully connected graph with K > 3F nodes and the node-fault model, i.e., fi ≤ F,

when the source node is a Byzantine faulty node, 3ROM(K/3, K/3+1) guarantees agreement at

the good nodes.

Proof. The source node is a Byzantine faulty node.
Round 1 – The source node broadcasts a Sync message to at least K-F nodes where at least K-F†-

F‡ are good nodes and receive the message correctly (valid). Let H be this set of good
nodes.

Round 2 – Each node in H broadcasts a Relay message to all other nodes with at least K-F other
nodes receiving the Relay message correctly. Hence, for each node in H, its
corresponding column in Mglobal has at least K-F non-zero entries.

Round 3 – Since at the end of Round 2, all good nodes receive messages from the nodes in H, at
least K-2F = F+1 messages, all good nodes participate in this round. Each good node
broadcasts its vector of received messages to all other nodes and at least K-F nodes will
receive it correctly. At the end of this round, a node constructs its matrix M, which is
similar to, but likely different from, Mglobal. The matrix M at a good node Ni is different
from Mglobal in at most F rows and F columns corresponding to the Byzantine faulty
nodes. Also, the matrix M at a good node Ni is identical to the matrix M at other good
nodes Nj, j = 1..G and j≠i, except in the same rows and columns corresponding to the
Byzantine faulty nodes. Therefore, the columns in M corresponding to nodes in H have
at least K-F non-zero entries. Furthermore, the column corresponding to the faulty
source node, has at least K-2F non-zero (the nodes in H) entries in M. Since K > 3F,
(equivalently, K/3 > F), there are at least K-2F+1 > K/3+1 columns in M (the nodes in H
plus the faulty source), with at least K-2F > K/3 non-zero entries. Therefore, each node
votes “accept” for 3ROM(K/3, K/3+1). □

Note that when the source is a good node (node-fault model), since the set H consists of at least
2K/3 good nodes, this weaker assumption holds and Theorems 2 and 7 apply. Also, although

† Up to F good nodes do not receive the message.
‡ Up to F simultaneous faulty nodes.

10

this weaker assumption does not apply to the link-fault model (all nodes are good) and Theorems
1 still holds, nevertheless, since with this weaker assumption, β = K/3+1 and K/3+1 < 2K/3,
Theorem 7 applies to both models.

4.3. Message Observation Window, Agreement Within A Time Bound

Earlier in this paper we stated that to simplify the explanation of the problem and our proposed
solution, a transmitted message from a single source arrived at the receiving nodes logically at
the same time. In this section we visit this assumption and justify this rationality. In an
implementation, as we have explained in Section 3.1, a given message from a single source
arrives at the receiving nodes within d units of each other. Figure 1 is a depiction of a message
through three rounds of the 3ROM algorithm. NS is the source node, Ni and Nj represent the
nodes that receive the message at the two extremes of the communication latencies, i.e., D and
D+d = γ, respectively, i ≠ j ≠ S. Thus, unless proper measures are taken, consequent relaying of
messages at subsequent rounds widens message arrivals at the nodes for every round by an
additional d. In this figure, ‘↑’ indicates broadcasting a message, ‘↓’ indicates receiving a
message, and the labels on these arrows, s, i, and j, correspond to NS, Ni, and Nj, respectively, as
the initiators of the messages.

For the following lemmas, NS is the source node initiating Round 1, Ni is the node that receives
the message at the earliest time, i.e., D, and Nj is the node that receives the message at the latest
time, i.e., D+d = γ.

Lemma 8. Message observation window for Round 2 is [γ-2d, γ+d].

Proof. Round 2 begins by Ni and Nj relaying the messages they received from NS. For this
round, the nodes relay the messages as soon as they receive it, i.e., within at most d of each
other. Thus, at the end of Round 2, the messages arrive at the nodes within 2d of each other.
Since a node does not physically send a message to itself, but uses its own message, to account
for the worst case message delivery time, its message is assumed to arrive at itself at γ. At the
end of Round 2, the earliest a message can arrive is at Nj and from the first node that started its
Round 2, i.e., Ni. As shown on the timeline of activities, this message arrives at the longest delay
minus the accumulated drift for two rounds, i.e., γ-2d. Similarly, the latest a message can arrive
is at Ni and from the node that started its Round 2 last, i.e., Nj, and at the longest delay plus the
initial drift between the nodes from the previous round, i.e., γ+d. Thus, the window of
observation for message arrival for Round 2 is [γ-2d, γ+d]. □

Lemma 9. All good nodes participating in Round 2 finish Round 2 and start Round 3 within d of

each other.

Proof. From Figure 1, from the start of Round 1 to the end of Round 2, the earliest message
(EM) and latest message (LM) arrival time at NS at EMS = γ+D-d and LMS = γ+γ, respectively.
Similarly, for Ni, EMi = D+d+D, LMi = D+d+γ, and for Nj, EMj = γ+D-d, LMj = γ+γ. Simple
algebraic manipulation gives ΔEM = d and ΔLM = 0 for any two nodes, i.e., the nodes finish Round

2 and start Round 3 within d of each other. □

Lemma 10. Message observation window for Round 3 is [γ-2d, γ+d].

11

Proof. It follows from Lemma 9 that the nodes start Round 3 within d of each other. In a similar
argument as Lemma 8, the observation window for message arrival for Round 3 is [γ-2d, γ+d]. □

It follows from Lemmas 8 through 10 that at the end of each round the nodes are within d of each
other, thus, justifying rationality of our assumption of logical timing of arrival of messages.

N i

N
j time

N S

2d dd 2d

dd

d

0 D 0

0

D D

DD

D

0

0 0 D

s

j i s

s s

s s

 i

 i i

 i i

j j

j j

j

γ γ γ

γ γ

γ γ

0

s

ss

Fig. 1. Message observation window = [-2d, d] from γ.

4.4. Complexity Of The 3ROM Algorithm

In 3ROM algorithm, since a node does not send a message to itself, the number of transmitted
messages per node and for each round is (K-1). For the worst case analysis, all nodes participate
in Rounds 2 and 3. Thus, the total number of messages transmitted per round is (K-1), K(K-1),
and K2(K-1), for Rounds 1, 2 and 3, respectively. Although in Round 3 a node broadcasts a
vector of messages, for complexity analysis purposes, we count each individual message
separately. Therefore, the total number of exchanged messages is (K-1)+K(K-1)+K2(K-1) and
the message complexity for the 3ROM algorithm is O(K3). However, if a message is indeed
physically broadcast to all, e.g., when the communication means is wireless, then the number of
broadcast messages per node for each round is 1. Thus, the total number of messages broadcast
per round is 1, (K-1), and K(K-1), for Rounds 1, 2 and 3, respectively, the total number of
exchanged messages is 1+(K-1)+K(K-1), and the message complexity for the 3ROM algorithm is
O(K2). However, the message complexity for the OM algorithm for the above two scenarios is
O(KF) and O(KF-1), respectively. We would like to emphasize that the number of rounds of
exchanged messages for the 3ROM algorithm is independent of F.

5. Model Checking

In this section we present a mechanical verification of the 3ROM algorithm using the model
checking approach for its ease, feasibility, and quick examination of the problem space, to verify
correctness of our formal proof of the algorithm. The Symbolic Model Verifier (SMV) [20] was
used in the modeling of this algorithm. SMV’s language description and modeling capability
provide relatively easy translation from the pseudo-code. SMV semantics are synchronous
composition, where all assignments are executed in parallel and synchronously. Thus, a single
step of the resulting model corresponds to a step in each of the components.

12

A number of cases for each fault model were model checked. In particular, for the node-fault
model, scenarios with F = 0..3 and K = 4..10, respectively, were model checked with the weaker
assumptions, i.e., ∑cj ≥ F+1 and ∑Xi ≥ F+2. Model checking of the link-fault model requires a
specific number of link faults being considered. Two cases with F = 2, K = 7, and F = 3, K = 10,
were model checked. Model checking of larger graphs and with more number of node and link
faults can readily be accommodated. The SMV models are listed in Appendices A and B.

5.1. Model Checked Propositions

Computational tree logic (CTL), a temporal logic, is used to express properties of a system. In
CTL formulas are composed of path quantifiers, E and A, and temporal operators, X, F, G,
and U [21]. A means “All” and has to hold on all paths starting from the current state. F means
“Finally” and eventually has to hold (somewhere on the subsequent path). In this section the
claims of agreement at the good nodes and at the end of the third round is examined. The node-
fault and link-fault models are model checked separately for F = 1, 2, and 3, while the same CTL
proposition is used to verify agreement has been reached at all good nodes for both models.

For model checking of each scenario, a particular node is instructed to be the source and
scheduled to initiate broadcast of a Sync message at a particular time. Since the 3ROM is
deterministic, the final vote time, VotingResultTime, is set to the end of the 3rd round after the
broadcast of the initial Sync message. Validation of the CTL proposition requires examination of
an underlying proposition. In particular, the variable VoteTime is used in these properties and is
defined here.

VoteTime = (GlobalClock ≥ VotingResultTime) ;

The GlobalClock is a measure of elapsed time from the beginning of the operation with respect
to the real time, i.e., external view. The VoteTime is indicative of the GlobalClock reaching its
target value of VotingResultTime and the GlobalAgreement is defined as the conjunction of
voting results at all good nodes.

Proposition SystemLiveness: AF (VoteTime)
This property addresses the liveness property of the system and whether time advances and the
amount of time elapsed, VoteTime, has advanced beyond the broadcast of the message and the
three rounds to reach agreement on that message.

Proposition GlobalAgreement: AF (VoteTime & GlobalAgreement)
This proposition encompasses the criteria for the agreement property as well as the claim of
determinism. The proposition specifies whether or not the system will reach agreement in the
three rounds after the message was initially broadcast. This property is expected to hold.

In satisfying the Agreement Property, and its related GlobalAgreement proposition, both node-
fault and link-fault models had to be included, i.e., faulty transmitters and faulty links were
model checked. Since this proposition includes the Validity Property (i.e., nonfaulty
transmitter), a separate proposition was not needed.

13

The model checking results of the bounded model of the algorithm have verified the correctness
of the algorithm for fully connected networks with K ≥ 3F + 1 nodes, for both node-fault and
link-fault models, and for the following scenarios; F = 0, 1, 2, 3 simultaneous faults and K = 4, 4,
7, and 10, respectively. In addition, the results have confirmed the claims of determinism and
independence of the algorithm from F.

6. Conclusions

Distributed systems have become an integral part of safety-critical computing applications,
necessitating system designs that incorporate complex fault-tolerant resource management
functions to provide globally coordinated operations with ultra-reliability. As a result, robust
clock synchronization has become a required fundamental component of fault-tolerant safety-
critical distributed systems. The main issue in solving the clock synchronization problem for the
general case is a lack of a symmetric view in the system at the participating good nodes. We first
enumerated several ways of achieving message symmetry across the system, and then presented
an alternative, referred to as the 3ROM algorithm, that guarantees agreement in a system in three
rounds. The 3ROM assumes each node Ni, i = 1..K, either induces up to F faults if it is a
faulty node, or experiences no more than F faults if it is a good node, and in addition, the
maximum number of simultaneous faults in the network is limited to F. The algorithm is based
on the Oral Message algorithm of Lamport et al., is scalable with respect to the number of nodes
in the system, and applies equally to the traditional node-fault model as well as the link-fault
models. The 3ROM is independent of the fault model (node-fault or link-fault model), and is
independent of the number of faults (in terms of number of required rounds, not the amount of
messages), and has a message complexity of O(K3). We also presented a mechanical verification
of the algorithm for up to three simultaneous Byzantine faults. The model-checking effort was
focused on verifying the correctness of a bounded model of the algorithm as well as confirming
claims of determinism. The underlying topology in this paper was a fully connected graph. We
leave the generalization of our solution to other topologies, including an arbitrary graph that
meets the minimum requirements of number of nodes and connectivity, to future works.

References

1. Kopetz, H: Real-Time Systems, Design Principles for Distributed Embedded Applications,
Kluwar Academic Publishers, ISBN 0-7923-9894-7, 1997.

2. Torres-Pomales, W; Malekpour, M.R.; Miner, P.S.: ROBUS-2: A fault-tolerant broadcast

communication system, NASA/TM-2005-213540, pp. 201, March 2005.
3. Torres-Pomales, W.; Malekpour, M.R.; Miner, P.S.: Design of the Protocol Processor for the

ROBUS-2 Communication System, NASA/TM-2005-213934, pp. 252, November 2005.
4. Butler, R.: A primer on architectural level fault tolerance, NASA/TM-2008-215108,

February 2008.
5. Lamport, L.; Shostak, R.; Pease, M.: The Byzantine General Problem, ACM Transactions on

Programming Languages and Systems, 4(3), pp. 382-401, July 1982.
6. Driscoll, K.; Hall, B.; Sivencrona, H.; Zumsteg, P.:, Byzantine Fault Tolerance, from Theory

to Reality, LNCS, 22nd International Conference on Computer Safety, Reliability and
Security, pp. 235-248, September 2003.

14

7. Lamport, L.; Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults, J. ACM,
vol. 32, no. 1, pp. 52-78, 1985.

8. Schmid, U.; Weiss, B.; Keidar, I.: Impossibility Results And Lower Bounds For Consensus

Under Link Failures, in SIAM Journal on Computing 38(5), p. 1912-1951, January 2009.
9. Hoyme, K.; Driscoll, K.: SAFEbusTM, 11th AIAA/IEEE Digital Avionics Systems

Conference, pages 68–73, October 1992.
10. Aeronautical Radio, Inc., Annapolis, MD. ARINC Specification 659: Backplane Data Bus,

December 1993. Prepared by the Airlines Electronic Engineering Committee.
11. Kopetz, H.; Grünsteidl, G.: TTP – a time-triggered protocol for fault-tolerant real-time

systems, Fault Tolerant Computing Symposium 23, pages 524–533, June 1993.
12. Bauer, G.; Kopetz, H.; and Steiner, W.: The central guardian approach to enforce fault

isolation in a time-triggered system, Proc. of 6th International Symposium on Autonomous
Decentralized Systems (ISADS 2003), pp. 37–44, April 2003.

13. Malekpour, M.R.: A Self-Stabilizing Hybrid-Fault Tolerant Synchronization Protocol,
NASA/TM-2014-218285, July 2014.

14. Pease, M.; Shostak, R.; and Lamport, l.: Reaching agreement in the presence of faults,
Journal of the ACM, 27(2): 228-234, April 1980.

15. Lincoln, P.; Rushby J.: A Formally Verified Algorithm for Interactive Consistency Under a

Hybrid Fault Model, Proceedings of the Fault-Tolerant Computing Symposium, FTCS 23,
June 1993.

16. Miner, P.S.; Geser, A.; Pike, L.; Maddalon, J: A Unified Fault-tolerance Protocol, In Yassine
Lakhnech and Sergio Yovine, editors, Formal Techniques, Modeling and Analysis of Timed
and Fault-Tolerant Systems, volume 3253, pp. 167-182, Springer, 2004.

17. Malekpour, M.R.: A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization

Protocol, NASA/TM-2009-215758, June 2009.
18. Schmid, U.; Weiss, B.; Rushby, J.: Formally Verified Byzantine Agreement in Presence of

Link Faults, in 22nd International Conference on Distributed Computing Systems
(ICDCS’02), pp. 608–616, July 2002.

19. Dolev, D.; Halpern, J.Y.; Strong, R.: On the Possibility and Impossibility of Achieving Clock

Synchronization, proceedings of the 16th Annual ACM STOC, pp. 504-511, 1984.
20. http://www-2.cs.cmu.edu/~modelcheck/smv.html
21. Clarke, E.M.; Emerson, E.A.: Design and synthesis of synchronization skeletons using

branching time temporal logic, In Logic of Programs: Workshop, LNCS 131, Springer, May
1981.

http://www-2.cs.cmu.edu/~modelcheck/smv.html

15

Appendix A

--
-- File Name: 3ROM_NodeFault_K10.smv
-- This file is for a system of K good nodes, where F > 1.
-- Note that the graph is fully connected.
--
--
-- Environment : SMV
-- Organization: NASA Langley Research Center
-- Project: Self-Stablization
-- Authors: Malekpour, Mahyar
--
-- NASA Langley Research Center
-- Hampton, VA 23681-2199
-- Creation Date: 9/2/2014
--
--
-- This SMV description is property of the National Aeronautics and Space
-- Administration. Unauthorized use or duplication of this VHDL description is
-- strictly prohibited. Authorized users are subject to the following
-- restrictions:
--
-- . Neither the author, their corporation, nor NASA is responsible for any
-- consequence of the use of this SMV description.
--
-- . The origin of this SMV description must not be misrepresented either
-- by explicit claim or by omission.
--
-- . Altered versions of this SMV description must be plainly marked as
-- such.
--
--
-- . This notice may not be removed or altered.
--
--
--
-- Modified on: 6/ 3/2014
-- by: Mahyar Malekpour
--
--
--
-- Global Constants:
--

#define Node_Id1 1
#define Node_Id2 2
#define Node_Id3 3
#define Node_Id4 4
#define Node_Id5 5
#define Node_Id6 6
#define Node_Id7 7
#define Node_Id8 8
#define Node_Id9 9
#define Node_Id10 10

#define SourceNodeId (Node_Id1)

-- Drift in units of Gamma
#define DriftP (5)

-- Network Size
#define K 10
#define G 7
#define F 3
#define FPlusOne (F + 1)
#define FPlusTwo (F + 2)
#define TwoFPlusOne (2 * F + 1)

16

-- Topology = fully connected graph
#define P (20 + DriftP)

#define GlobalClockMax (P + 7)

-- P of SourceNodeId + 3 rounds
#define TimeToVote (P + 3)

-- Drift at the local level
#define P_N1 (P - 0)
#define P_N2 (P - 1)
#define P_N3 (P - 2)
#define P_N4 (P - 3)
#define P_N5 (P - 4)
#define P_N6 (P + 1)
#define P_N7 (P + 2)
#define P_N8 (P + 3)
#define P_N9 (P + 4)
#define P_N10 (P + 5)

--
--
--
--
--
MODULE main

VAR
 Global_Clock : 0 .. GlobalClockMax ;

 FaultyNode_1 : FaultyNode (Node_Id8, P_N8, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_8,
 FaultyNode_2.MessageOut_9,
 FaultyNode_3.MessageOut_10) ;
 FaultyNode_2 : FaultyNode (Node_Id9, P_N9, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_8,
 FaultyNode_2.MessageOut_9,
 FaultyNode_3.MessageOut_10) ;
 FaultyNode_3 : FaultyNode (Node_Id10, P_N10, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_8,

17

 FaultyNode_2.MessageOut_9,
 FaultyNode_3.MessageOut_10) ;

 Node_1 : Node (Node_Id1, P_N1, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_1,
 FaultyNode_2.MessageOut_1,
 FaultyNode_3.MessageOut_1,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
-- Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;
 FaultyNode_1.MsgVector, FaultyNode_2.MsgVector, FaultyNode_3.MsgVector) ;

 Node_2 : Node (Node_Id2, P_N2, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_2,
 FaultyNode_2.MessageOut_2,
 FaultyNode_3.MessageOut_2,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
-- Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;
 FaultyNode_1.MsgVector, FaultyNode_2.MsgVector, FaultyNode_3.MsgVector) ;

 Node_3 : Node (Node_Id3, P_N3, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_3,
 FaultyNode_2.MessageOut_3,
 FaultyNode_3.MessageOut_3,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
-- Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;
 FaultyNode_1.MsgVector, FaultyNode_2.MsgVector, FaultyNode_3.MsgVector) ;

 Node_4 : Node (Node_Id4, P_N4, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,

18

-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_4,
 FaultyNode_2.MessageOut_4,
 FaultyNode_3.MessageOut_4,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
-- Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;
 FaultyNode_1.MsgVector, FaultyNode_2.MsgVector, FaultyNode_3.MsgVector) ;

 Node_5 : Node (Node_Id5, P_N5, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_5,
 FaultyNode_2.MessageOut_5,
 FaultyNode_3.MessageOut_5,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
-- Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;
 FaultyNode_1.MsgVector, FaultyNode_2.MsgVector, FaultyNode_3.MsgVector) ;

 Node_6 : Node (Node_Id6, P_N6, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_6,
 FaultyNode_2.MessageOut_6,
 FaultyNode_3.MessageOut_6,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
-- Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;
 FaultyNode_1.MsgVector, FaultyNode_2.MsgVector, FaultyNode_3.MsgVector) ;

 Node_7 : Node (Node_Id7, P_N7, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut) ;
 FaultyNode_1.MessageOut_7,
 FaultyNode_2.MessageOut_7,
 FaultyNode_3.MessageOut_7,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
-- Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;
 FaultyNode_1.MsgVector, FaultyNode_2.MsgVector, FaultyNode_3.MsgVector) ;

 Node_8 : Node (Node_Id8, P_N8, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,

19

 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
 Node_8.MessageOut,
 Node_9.MessageOut,
 Node_10.MessageOut,
-- FaultyNode_1.MessageOut_7,
-- FaultyNode_2.MessageOut_7,
-- FaultyNode_3.MessageOut_7,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_9 : Node (Node_Id9, P_N9, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
 Node_8.MessageOut,
 Node_9.MessageOut,
 Node_10.MessageOut,
-- FaultyNode_1.MessageOut_7,
-- FaultyNode_2.MessageOut_7,
-- FaultyNode_3.MessageOut_7,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_10 : Node (Node_Id10, P_N10, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
 Node_8.MessageOut,
 Node_9.MessageOut,
 Node_10.MessageOut,
-- FaultyNode_1.MessageOut_7,
-- FaultyNode_2.MessageOut_7,
-- FaultyNode_3.MessageOut_7,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Agreement : boolean ;

DEFINE

 VoteTime := (Global_Clock >= TimeToVote) ;

 -- For all good nodes and good links.
 GlobalAgreement := (Global_Clock = TimeToVote) &
 (Node_1.VoteResult & Node_2.VoteResult &
 Node_3.VoteResult & Node_4.VoteResult &
 Node_5.VoteResult & Node_6.VoteResult &
 Node_7.VoteResult & Node_8.VoteResult &
 Node_9.VoteResult & Node_10.VoteResult) ;

 -- For only the good nodes with the node-fault model, i.e, faulty nodes but no faulty links.
 GlobalAgreementNodeFault :=

20

 (Global_Clock = TimeToVote) &
 (Node_1.VoteResult & Node_2.VoteResult &
 Node_3.VoteResult & Node_4.VoteResult &
 Node_5.VoteResult & Node_6.VoteResult &
 Node_7.VoteResult) ;

ASSIGN

 --
 init (Global_Clock) := 0 ;
 next (Global_Clock) :=
 case
 (Global_Clock < GlobalClockMax) : Global_Clock + 1 ;
 1 : Global_Clock ;
 esac ;

SPEC

 --
 -- Proposition #1:
 --
-- AF (VoteTime)

 --
 -- Proposition #2:
 --
 AF (VoteTime & GlobalAgreementNodeFault) -- true

-- end of main

--
--
--
-- Faulty node.
--
--
MODULE FaultyNode (Node_Id, MyP, Global_Clock, SourceNode,
 N1_Msg, N2_Msg, N3_Msg, N4_Msg, N5_Msg, N6_Msg, N7_Msg, N8_Msg, N9_Msg, N10_Msg)

VAR

 MessageOut_1 : {NONE, Sync, Relay} ;
 MessageOut_2 : {NONE, Sync, Relay} ;
 MessageOut_3 : {NONE, Sync, Relay} ;
 MessageOut_4 : {NONE, Sync, Relay} ;
 MessageOut_5 : {NONE, Sync, Relay} ;
 MessageOut_6 : {NONE, Sync, Relay} ;
 MessageOut_7 : {NONE, Sync, Relay} ;
 MessageOut_8 : {NONE, Sync, Relay} ;
 MessageOut_9 : {NONE, Sync, Relay} ;
 MessageOut_10 : {NONE, Sync, Relay} ;

 MsgVector : array 1..10 of {0, 1} ;
 VoteResult : boolean ;

DEFINE

 Count_Sync :=
 ((N1_Msg = Sync) +

21

 (N2_Msg = Sync) +
 (N3_Msg = Sync) +
 (N4_Msg = Sync) +
 (N5_Msg = Sync) +
 (N6_Msg = Sync) +
 (N7_Msg = Sync) +
 (N8_Msg = Sync) +
 (N9_Msg = Sync) +
 (N10_Msg = Sync)) ;

ASSIGN

 init (MessageOut_1) := NONE ;
 init (MessageOut_2) := NONE ;
 init (MessageOut_3) := NONE ;
 init (MessageOut_4) := NONE ;
 init (MessageOut_5) := NONE ;
 init (MessageOut_6) := NONE ;
 init (MessageOut_7) := NONE ;
 init (MessageOut_8) := NONE ;
 init (MessageOut_9) := NONE ;
 init (MessageOut_10) := NONE ;

 next (MessageOut_1) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : Sync ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

 next (MessageOut_2) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : Sync ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

 next (MessageOut_3) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : Sync ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

 next (MessageOut_4) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : Sync ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

 next (MessageOut_5) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : NONE ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

 next (MessageOut_6) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : NONE ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

 next (MessageOut_7) :=

22

 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : NONE ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

 next (MessageOut_8) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : NONE ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

 next (MessageOut_9) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : NONE ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

 next (MessageOut_10) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : NONE ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : {NONE, Relay} ;
 1 : NONE ;
 esac ;

-- end of FaultyNode

--
--
--
-- Good node, for node-fault model.
--
--
MODULE Node (Node_Id, MyP, Global_Clock, SourceNode,
 N1_Msg, N2_Msg, N3_Msg, N4_Msg, N5_Msg, N6_Msg, N7_Msg, N8_Msg, N9_Msg, N10_Msg,
 N1_MsgVector, N2_MsgVector, N3_MsgVector, N4_MsgVector, N5_MsgVector,
 N6_MsgVector, N7_MsgVector, N8_MsgVector, N9_MsgVector, N10_MsgVector)

VAR

 RoundNum : 0 .. 3 ;
 MessageOut : {NONE, Sync, Relay} ;
 -- Messages recieved (Rx) from the nodes are saved in this vector and will be
 -- broadcast/used during round 3.
 MsgVector : array 1..10 of {0, 1} ;
 VoteResult : boolean ;

DEFINE

 Count_Sync :=
 ((N1_Msg = Sync) +
 (N2_Msg = Sync) +
 (N3_Msg = Sync) +
 (N4_Msg = Sync) +
 (N5_Msg = Sync) +
 (N6_Msg = Sync) +
 (N7_Msg = Sync) +
 (N8_Msg = Sync) +
 (N9_Msg = Sync) +
 (N10_Msg = Sync)) ;

 Count_Relay :=
 ((N1_Msg = Relay) +
 (N2_Msg = Relay) +
 (N3_Msg = Relay) +

23

 (N4_Msg = Relay) +
 (N5_Msg = Relay) +
 (N6_Msg = Relay) +
 (N7_Msg = Relay) +
 (N8_Msg = Relay) +
 (N9_Msg = Relay) +
 (N10_Msg = Relay)) ;

 Count_MyVector :=
 (MsgVector [1] +
 MsgVector [2] +
 MsgVector [3] +
 MsgVector [4] +
 MsgVector [5] +
 MsgVector [6] +
 MsgVector [7] +
 MsgVector [8] +
 MsgVector [9] +
 MsgVector [10]) ;

 Count_MatrixColumn_1 :=
 (N1_MsgVector [1] +
 N2_MsgVector [1] +
 N3_MsgVector [1] +
 N4_MsgVector [1] +
 N5_MsgVector [1] +
 N6_MsgVector [1] +
 N7_MsgVector [1] +
 N8_MsgVector [1] +
 N9_MsgVector [1] +
 N10_MsgVector [1]) ;

 Count_MatrixColumn_2 :=
 (N1_MsgVector [2] +
 N2_MsgVector [2] +
 N3_MsgVector [2] +
 N4_MsgVector [2] +
 N5_MsgVector [2] +
 N6_MsgVector [2] +
 N7_MsgVector [2] +
 N8_MsgVector [2] +
 N9_MsgVector [2] +
 N10_MsgVector [2]) ;

 Count_MatrixColumn_3 :=
 (N1_MsgVector [3] +
 N2_MsgVector [3] +
 N3_MsgVector [3] +
 N4_MsgVector [3] +
 N5_MsgVector [3] +
 N6_MsgVector [3] +
 N7_MsgVector [3] +
 N8_MsgVector [3] +
 N9_MsgVector [3] +
 N10_MsgVector [3]) ;

 Count_MatrixColumn_4 :=
 (N1_MsgVector [4] +
 N2_MsgVector [4] +
 N3_MsgVector [4] +
 N4_MsgVector [4] +
 N5_MsgVector [4] +
 N6_MsgVector [4] +
 N7_MsgVector [4] +
 N8_MsgVector [4] +
 N9_MsgVector [4] +
 N10_MsgVector [4]) ;

 Count_MatrixColumn_5 :=
 (N1_MsgVector [5] +

24

 N2_MsgVector [5] +
 N3_MsgVector [5] +
 N4_MsgVector [5] +
 N5_MsgVector [5] +
 N6_MsgVector [5] +
 N7_MsgVector [5] +
 N8_MsgVector [5] +
 N9_MsgVector [5] +
 N10_MsgVector [5]) ;

 Count_MatrixColumn_6 :=
 (N1_MsgVector [6] +
 N2_MsgVector [6] +
 N3_MsgVector [6] +
 N4_MsgVector [6] +
 N5_MsgVector [6] +
 N6_MsgVector [6] +
 N7_MsgVector [6] +
 N8_MsgVector [6] +
 N9_MsgVector [6] +
 N10_MsgVector [6]) ;

 Count_MatrixColumn_7 :=
 (N1_MsgVector [7] +
 N2_MsgVector [7] +
 N3_MsgVector [7] +
 N4_MsgVector [7] +
 N5_MsgVector [7] +
 N6_MsgVector [7] +
 N7_MsgVector [7] +
 N8_MsgVector [7] +
 N9_MsgVector [7] +
 N10_MsgVector [7]) ;

 Count_MatrixColumn_8 :=
 (N1_MsgVector [8] +
 N2_MsgVector [8] +
 N3_MsgVector [8] +
 N4_MsgVector [8] +
 N5_MsgVector [8] +
 N6_MsgVector [8] +
 N7_MsgVector [8] +
 N8_MsgVector [8] +
 N9_MsgVector [8] +
 N10_MsgVector [8]) ;

 Count_MatrixColumn_9 :=
 (N1_MsgVector [9] +
 N2_MsgVector [9] +
 N3_MsgVector [9] +
 N4_MsgVector [9] +
 N5_MsgVector [9] +
 N6_MsgVector [9] +
 N7_MsgVector [9] +
 N8_MsgVector [9] +
 N9_MsgVector [9] +
 N10_MsgVector [9]) ;

 Count_MatrixColumn_10 :=
 (N1_MsgVector [10] +
 N2_MsgVector [10] +
 N3_MsgVector [10] +
 N4_MsgVector [10] +
 N5_MsgVector [10] +
 N6_MsgVector [10] +
 N7_MsgVector [10] +
 N8_MsgVector [10] +
 N9_MsgVector [10] +
 N10_MsgVector [10]) ;

25

 VoteResult :=
 (RoundNum = 3) &
 (((Count_MatrixColumn_1 >= FPlusOne) +
 (Count_MatrixColumn_2 >= FPlusOne) +
 (Count_MatrixColumn_3 >= FPlusOne) +
 (Count_MatrixColumn_4 >= FPlusOne) +
 (Count_MatrixColumn_5 >= FPlusOne) +
 (Count_MatrixColumn_6 >= FPlusOne) +
 (Count_MatrixColumn_7 >= FPlusOne) +
 (Count_MatrixColumn_8 >= FPlusOne) +
 (Count_MatrixColumn_9 >= FPlusOne) +
-- (Count_MatrixColumn_10 >= FPlusOne)) >= TwoFPlusOne) ; -- For faulty nodes participating in rounds 2 and 3.
 (Count_MatrixColumn_10 >= FPlusOne)) >= FPlusTwo) ; -- For faulty nodes going silent in rounds 2 and 3.

ASSIGN

 init (RoundNum) := 0 ;
-- init (MessageOut) := {NONE, Sync, Relay} ;
 init (MessageOut) := NONE ;

 init (MsgVector [1]) := 0 ;
 init (MsgVector [2]) := 0 ;
 init (MsgVector [3]) := 0 ;
 init (MsgVector [4]) := 0 ;
 init (MsgVector [5]) := 0 ;
 init (MsgVector [6]) := 0 ;
 init (MsgVector [7]) := 0 ;
 init (MsgVector [8]) := 0 ;
 init (MsgVector [9]) := 0 ;
 init (MsgVector [10]) := 0 ;

 next (RoundNum) :=
 case
 (RoundNum = 3) : 0 ;
 (Global_Clock = MyP) & (SourceNode = Node_Id) : 1 ;
 (Count_Sync > 0) : 2 ;
 -- If at least F Relays and one Sync, from the source of course, then Round = 3.
 ((Count_Relay + MsgVector [SourceNode]) >= FPlusOne) : 3 ;
 -- Or, alternatively, the following will do.
-- (Count_Relay + Count_MyVector >= FPlusOne) : 3 ;
 1 : RoundNum ;
 esac ;

 next (MessageOut) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : Sync ;
 (Count_Sync > 0) : Relay ;
 1 : NONE ;
 esac ;

 next (MsgVector [1]) :=
 case
 (N1_Msg = Sync) | (N1_Msg = Relay) : 1 ;
 1 : MsgVector [1] ;
 esac ;

 next (MsgVector [2]) :=
 case
 (N2_Msg = Sync) | (N2_Msg = Relay) : 1 ;
 1 : MsgVector [2] ;
 esac ;

 next (MsgVector [3]) :=
 case

26

 (N3_Msg = Sync) | (N3_Msg = Relay) : 1 ;
 1 : MsgVector [3] ;
 esac ;

 next (MsgVector [4]) :=
 case
 (N4_Msg = Sync) | (N4_Msg = Relay) : 1 ;
 1 : MsgVector [4] ;
 esac ;

 next (MsgVector [5]) :=
 case
 (N5_Msg = Sync) | (N5_Msg = Relay) : 1 ;
 1 : MsgVector [5] ;
 esac ;

 next (MsgVector [6]) :=
 case
 (N6_Msg = Sync) | (N6_Msg = Relay) : 1 ;
 1 : MsgVector [6] ;
 esac ;

 next (MsgVector [7]) :=
 case
 (N7_Msg = Sync) | (N7_Msg = Relay) : 1 ;
 1 : MsgVector [7] ;
 esac ;

 next (MsgVector [8]) :=
 case
 (N8_Msg = Sync) | (N8_Msg = Relay) : 1 ;
 1 : MsgVector [8] ;
 esac ;

 next (MsgVector [9]) :=
 case
 (N9_Msg = Sync) | (N9_Msg = Relay) : 1 ;
 1 : MsgVector [9] ;
 esac ;

 next (MsgVector [10]) :=
 case
 (N10_Msg = Sync) | (N10_Msg = Relay) : 1 ;
 1 : MsgVector [10] ;
 esac ;

-- end of Node

--
--

27

Appendix B

--
-- File Name: 3ROM_LinkFault_k10.smv
-- This file is for a system of K good nodes, where F > 1.
-- Note that the graph is fully connected.
--
--
-- Environment : SMV
-- Organization: NASA Langley Research Center
-- Project: Self-Stablization
-- Authors: Malekpour, Mahyar
--
-- NASA Langley Research Center
-- Hampton, VA 23681-2199
-- Creation Date: 9/4/2014
--
--
-- This SMV description is property of the National Aeronautics and Space
-- Administration. Unauthorized use or duplication of this VHDL description is
-- strictly prohibited. Authorized users are subject to the following
-- restrictions:
--
-- . Neither the author, their corporation, nor NASA is responsible for any
-- consequence of the use of this SMV description.
--
-- . The origin of this SMV description must not be misrepresented either
-- by explicit claim or by omission.
--
-- . Altered versions of this SMV description must be plainly marked as
-- such.
--
--
-- . This notice may not be removed or altered.
--
--
--
-- Modified on: 9/ 4/2014
-- by: Mahyar Malekpour
--
--
--
-- Global Constants:
--

#define Node_Id1 1
#define Node_Id2 2
#define Node_Id3 3
#define Node_Id4 4
#define Node_Id5 5
#define Node_Id6 6
#define Node_Id7 7
#define Node_Id8 8
#define Node_Id9 9
#define Node_Id10 10

#define SourceNodeId (Node_Id1)

-- Drift in units of Gamma
#define DriftP (5)

-- Network Size
#define K 10
#define G 7
#define F 3
#define FPlusOne (F + 1)
#define FPlusTwo (F + 2)
#define TwoFPlusOne (2 * F + 1)

28

-- Topology = fully connected graph
#define P (20 + DriftP)

#define GlobalClockMax (P + 5)

-- P of SourceNodeId + 3 rounds
#define TimeToVote (P + 3)

-- Drift at the local level
#define P_N1 (P - 0)
#define P_N2 (P - 1)
#define P_N3 (P - 2)
#define P_N4 (P - 3)
#define P_N5 (P - 4)
#define P_N6 (P + 1)
#define P_N7 (P + 2)
#define P_N8 (P + 3)
#define P_N9 (P + 4)
#define P_N10 (P + 5)

--
--
--
--
--
MODULE main

VAR
 Global_Clock : 0 .. GlobalClockMax ;

 Node_1 : Node (Node_Id1, P_N1, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut,
 NONE,
 NONE,
 NONE,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_2 : Node (Node_Id2, P_N2, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
-- Node_7.MessageOut,
 NONE,
 Node_8.MessageOut,
-- Node_9.MessageOut,
-- Node_10.MessageOut,
 NONE,
 NONE,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_3 : Node (Node_Id3, P_N3, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,

29

 Node_3.MessageOut,
 Node_4.MessageOut,
-- Node_5.MessageOut,
-- Node_6.MessageOut,
 NONE,
 NONE,
 Node_7.MessageOut,
-- Node_8.MessageOut,
 NONE,
 Node_9.MessageOut,
 Node_10.MessageOut,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_4 : Node (Node_Id4, P_N4, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
 Node_3.MessageOut,
 Node_4.MessageOut,
-- Node_5.MessageOut,
 NONE,
 Node_6.MessageOut,
-- Node_7.MessageOut,
 NONE,
 Node_8.MessageOut,
 Node_9.MessageOut,
-- Node_10.MessageOut,
 NONE,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_5 : Node (Node_Id5, P_N5, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
-- Node_3.MessageOut,
 NONE,
 Node_4.MessageOut,
 Node_5.MessageOut,
-- Node_6.MessageOut,
 NONE,
 Node_7.MessageOut,
 Node_8.MessageOut,
-- Node_9.MessageOut,
 NONE,
 Node_10.MessageOut,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_6 : Node (Node_Id6, P_N6, Global_Clock, SourceNodeId,
 Node_1.MessageOut,
 Node_2.MessageOut,
-- Node_3.MessageOut,
-- Node_4.MessageOut,
 NONE,
 NONE,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
-- Node_8.MessageOut,
 NONE,
 Node_9.MessageOut,
 Node_10.MessageOut,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_7 : Node (Node_Id7, P_N7, Global_Clock, SourceNodeId,

30

 Node_1.MessageOut,
-- Node_2.MessageOut,
 NONE,
 Node_3.MessageOut,
-- Node_4.MessageOut,
 NONE,
 Node_5.MessageOut,
-- Node_6.MessageOut,
 NONE,
 Node_7.MessageOut,
 Node_8.MessageOut,
 Node_9.MessageOut,
 Node_10.MessageOut,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_8 : Node (Node_Id8, P_N8, Global_Clock, SourceNodeId,
-- Node_1.MessageOut,
-- Node_2.MessageOut,
 NONE,
 NONE,
 Node_3.MessageOut,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
-- Node_7.MessageOut,
 NONE,
 Node_8.MessageOut,
 Node_9.MessageOut,
 Node_10.MessageOut,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_9 : Node (Node_Id9, P_N9, Global_Clock, SourceNodeId,
-- Node_1.MessageOut,
 NONE,
 Node_2.MessageOut,
 Node_3.MessageOut,
-- Node_4.MessageOut,
-- Node_5.MessageOut,
 NONE,
 NONE,
 Node_6.MessageOut,
 Node_7.MessageOut,
 Node_8.MessageOut,
 Node_9.MessageOut,
 Node_10.MessageOut,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

 Node_10 : Node (Node_Id10, P_N10, Global_Clock, SourceNodeId,
-- Node_1.MessageOut,
-- Node_2.MessageOut,
-- Node_3.MessageOut,
 NONE,
 NONE,
 NONE,
 Node_4.MessageOut,
 Node_5.MessageOut,
 Node_6.MessageOut,
 Node_7.MessageOut,
 Node_8.MessageOut,
 Node_9.MessageOut,
 Node_10.MessageOut,
 Node_1.MsgVector, Node_2.MsgVector, Node_3.MsgVector, Node_4.MsgVector,
 Node_5.MsgVector, Node_6.MsgVector, Node_7.MsgVector,
 Node_8.MsgVector, Node_9.MsgVector, Node_10.MsgVector) ;

31

DEFINE

 VoteTime := (Global_Clock >= TimeToVote) ;

 GlobalAgreement := (Global_Clock = TimeToVote) &
 (Node_1.VoteResult & Node_2.VoteResult &
 Node_3.VoteResult & Node_4.VoteResult &
 Node_5.VoteResult & Node_6.VoteResult &
 Node_7.VoteResult & Node_8.VoteResult &
 Node_9.VoteResult & Node_10.VoteResult) ;

ASSIGN

 init (Global_Clock) := 0 ;
 next (Global_Clock) :=
 case
 (Global_Clock < GlobalClockMax) : Global_Clock + 1 ;
 1 : Global_Clock ;
 esac ;

SPEC

 --
 -- Proposition #1:
 --
-- AF (VoteTime)

 --
 -- Proposition #2:
 --
 AF (VoteTime & GlobalAgreement) -- true

-- end of main

--
--
--
-- Good node, for link-fault model.
--
--
MODULE Node (Node_Id, MyP, Global_Clock, SourceNode,
 N1_Msg, N2_Msg, N3_Msg, N4_Msg, N5_Msg, N6_Msg, N7_Msg, N8_Msg, N9_Msg, N10_Msg,
 N1_MsgVector, N2_MsgVector, N3_MsgVector, N4_MsgVector, N5_MsgVector,
 N6_MsgVector, N7_MsgVector, N8_MsgVector, N9_MsgVector, N10_MsgVector)

VAR

 RoundNum : 0 .. 3 ;
 MessageOut : {NONE, Sync, Relay} ;

 -- Messages recieved (Rx) from the nodes are saved in this vector and will be
 -- broadcast/used during round 3.
 MsgVector : array 1..10 of {0, 1} ;
 VoteResult : boolean ;

DEFINE

 Count_Sync :=
 ((N1_Msg = Sync) +

32

 (N2_Msg = Sync) +
 (N3_Msg = Sync) +
 (N4_Msg = Sync) +
 (N5_Msg = Sync) +
 (N6_Msg = Sync) +
 (N7_Msg = Sync) +
 (N8_Msg = Sync) +
 (N9_Msg = Sync) +
 (N10_Msg = Sync)) ;

 Count_Relay :=
 ((N1_Msg = Relay) +
 (N2_Msg = Relay) +
 (N3_Msg = Relay) +
 (N4_Msg = Relay) +
 (N5_Msg = Relay) +
 (N6_Msg = Relay) +
 (N7_Msg = Relay) +
 (N8_Msg = Relay) +
 (N9_Msg = Relay) +
 (N10_Msg = Relay)) ;

 Count_MyVector :=
 (MsgVector [1] +
 MsgVector [2] +
 MsgVector [3] +
 MsgVector [4] +
 MsgVector [5] +
 MsgVector [6] +
 MsgVector [7] +
 MsgVector [8] +
 MsgVector [9] +
 MsgVector [10]) ;

 Count_MatrixColumn_1 :=
 (N1_MsgVector [1] +
 N2_MsgVector [1] +
 N3_MsgVector [1] +
 N4_MsgVector [1] +
 N5_MsgVector [1] +
 N6_MsgVector [1] +
 N7_MsgVector [1] +
 N8_MsgVector [1] +
 N9_MsgVector [1] +
 N10_MsgVector [1]) - F ;

 Count_MatrixColumn_2 :=
 (N1_MsgVector [2] +
 N2_MsgVector [2] +
 N3_MsgVector [2] +
 N4_MsgVector [2] +
 N5_MsgVector [2] +
 N6_MsgVector [2] +
 N7_MsgVector [2] +
 N8_MsgVector [2] +
 N9_MsgVector [2] +
 N10_MsgVector [2]) - F ;

 Count_MatrixColumn_3 :=
 (N1_MsgVector [3] +
 N2_MsgVector [3] +
 N3_MsgVector [3] +
 N4_MsgVector [3] +
 N5_MsgVector [3] +
 N6_MsgVector [3] +
 N7_MsgVector [3] +
 N8_MsgVector [3] +
 N9_MsgVector [3] +
 N10_MsgVector [3]) - F ;

33

 Count_MatrixColumn_4 :=
 (N1_MsgVector [4] +
 N2_MsgVector [4] +
 N3_MsgVector [4] +
 N4_MsgVector [4] +
 N5_MsgVector [4] +
 N6_MsgVector [4] +
 N7_MsgVector [4] +
 N8_MsgVector [4] +
 N9_MsgVector [4] +
 N10_MsgVector [4]) - F ;

 Count_MatrixColumn_5 :=
 (N1_MsgVector [5] +
 N2_MsgVector [5] +
 N3_MsgVector [5] +
 N4_MsgVector [5] +
 N5_MsgVector [5] +
 N6_MsgVector [5] +
 N7_MsgVector [5] +
 N8_MsgVector [5] +
 N9_MsgVector [5] +
 N10_MsgVector [5]) - F ;

 Count_MatrixColumn_6 :=
 (N1_MsgVector [6] +
 N2_MsgVector [6] +
 N3_MsgVector [6] +
 N4_MsgVector [6] +
 N5_MsgVector [6] +
 N6_MsgVector [6] +
 N7_MsgVector [6] +
 N8_MsgVector [6] +
 N9_MsgVector [6] +
 N10_MsgVector [6]) - F ;

 Count_MatrixColumn_7 :=
 (N1_MsgVector [7] +
 N2_MsgVector [7] +
 N3_MsgVector [7] +
 N4_MsgVector [7] +
 N5_MsgVector [7] +
 N6_MsgVector [7] +
 N7_MsgVector [7] +
 N8_MsgVector [7] +
 N9_MsgVector [7] +
 N10_MsgVector [7]) - F ;

 Count_MatrixColumn_8 :=
 (N1_MsgVector [8] +
 N2_MsgVector [8] +
 N3_MsgVector [8] +
 N4_MsgVector [8] +
 N5_MsgVector [8] +
 N6_MsgVector [8] +
 N7_MsgVector [8] +
 N8_MsgVector [8] +
 N9_MsgVector [8] +
 N10_MsgVector [8]) - F ;

 Count_MatrixColumn_9 :=
 (N1_MsgVector [9] +
 N2_MsgVector [9] +
 N3_MsgVector [9] +
 N4_MsgVector [9] +
 N5_MsgVector [9] +
 N6_MsgVector [9] +
 N7_MsgVector [9] +
 N8_MsgVector [9] +
 N9_MsgVector [9] +

34

 N10_MsgVector [9]) - F ;

 Count_MatrixColumn_10 :=
 (N1_MsgVector [10] +
 N2_MsgVector [10] +
 N3_MsgVector [10] +
 N4_MsgVector [10] +
 N5_MsgVector [10] +
 N6_MsgVector [10] +
 N7_MsgVector [10] +
 N8_MsgVector [10] +
 N9_MsgVector [10] +
 N10_MsgVector [10]) - F ;

 VoteResult :=
 (RoundNum = 3) &
 (((Count_MatrixColumn_1 >= FPlusOne) +
 (Count_MatrixColumn_2 >= FPlusOne) +
 (Count_MatrixColumn_3 >= FPlusOne) +
 (Count_MatrixColumn_4 >= FPlusOne) +
 (Count_MatrixColumn_5 >= FPlusOne) +
 (Count_MatrixColumn_6 >= FPlusOne) +
 (Count_MatrixColumn_7 >= FPlusOne) +
 (Count_MatrixColumn_8 >= FPlusOne) +
 (Count_MatrixColumn_9 >= FPlusOne) +
-- (Count_MatrixColumn_10 >= FPlusOne)) >= TwoFPlusOne) ;
 (Count_MatrixColumn_10 >= FPlusOne)) >= FPlusTwo) ;

ASSIGN

 init (RoundNum) := 0 ;
-- init (MessageOut) := {NONE, Sync, Relay} ;
 init (MessageOut) := NONE ;

 init (MsgVector [1]) := 0 ;
 init (MsgVector [2]) := 0 ;
 init (MsgVector [3]) := 0 ;
 init (MsgVector [4]) := 0 ;
 init (MsgVector [5]) := 0 ;
 init (MsgVector [6]) := 0 ;
 init (MsgVector [7]) := 0 ;
 init (MsgVector [8]) := 0 ;
 init (MsgVector [9]) := 0 ;
 init (MsgVector [10]) := 0 ;

 next (RoundNum) :=
 case
 (RoundNum = 3) : 0 ;
 (Global_Clock = MyP) & (SourceNode = Node_Id) : 1 ;
 !(SourceNode = Node_Id) & (Count_Sync > 0) : 2 ;
 -- If at least F Relays and one Sync, from the source of course, then Round = 3.
 ((Count_Relay + MsgVector [SourceNode]) >= FPlusOne) : 3 ;
 -- Or, alternatively, the following will do.
-- (Count_Relay + Count_MyVector >= FPlusOne) : 3 ;
 1 : RoundNum ;
 esac ;

 next (MessageOut) :=
 case
 (Global_Clock = MyP) & (SourceNode = Node_Id) : Sync ;
 (Count_Sync > 0) : Relay ;
 1 : NONE ;
 esac ;

35

 next (MsgVector [1]) :=
 case
 (N1_Msg = Sync) | (N1_Msg = Relay) : 1 ;
 1 : MsgVector [1] ;
 esac ;

 next (MsgVector [2]) :=
 case
 (N2_Msg = Sync) | (N2_Msg = Relay) : 1 ;
 1 : MsgVector [2] ;
 esac ;

 next (MsgVector [3]) :=
 case
 (N3_Msg = Sync) | (N3_Msg = Relay) : 1 ;
 1 : MsgVector [3] ;
 esac ;

 next (MsgVector [4]) :=
 case
 (N4_Msg = Sync) | (N4_Msg = Relay) : 1 ;
 1 : MsgVector [4] ;
 esac ;

 next (MsgVector [5]) :=
 case
 (N5_Msg = Sync) | (N5_Msg = Relay) : 1 ;
 1 : MsgVector [5] ;
 esac ;

 next (MsgVector [6]) :=
 case
 (N6_Msg = Sync) | (N6_Msg = Relay) : 1 ;
 1 : MsgVector [6] ;
 esac ;

 next (MsgVector [7]) :=
 case
 (N7_Msg = Sync) | (N7_Msg = Relay) : 1 ;
 1 : MsgVector [7] ;
 esac ;

 next (MsgVector [8]) :=
 case
 (N8_Msg = Sync) | (N8_Msg = Relay) : 1 ;
 1 : MsgVector [8] ;
 esac ;

 next (MsgVector [9]) :=
 case
 (N9_Msg = Sync) | (N9_Msg = Relay) : 1 ;
 1 : MsgVector [9] ;
 esac ;

 next (MsgVector [10]) :=
 case
 (N10_Msg = Sync) | (N10_Msg = Relay) : 1 ;
 1 : MsgVector [10] ;
 esac ;

-- end of Node

--
--

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

Achieving Agreement In Three Rounds With Bounded-Byzantine Faults

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Malekpour, Mahyar R.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-20585

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited
Subject Category 62
Availability: NASA STI Program (757) 864-9658

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

A three-round algorithm is presented that guarantees agreement in a system of K = 3F+1 nodes provided each faulty node
induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of
simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport et al. and is scalable
with respect to the number of nodes in the system and applies equally to the traditional node-fault model as well as the
link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a
bounded model of the algorithm as well as confirming claims of determinism.

15. SUBJECT TERMS

Agreement; Byzantine; Distributed; Fault tolerant; Model checking; Oral message; Synchronization

18. NUMBER
 OF
 PAGES

42
19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 999182.02.50.07.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA-TM-2015-218789

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

08 - 201501-

